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Mode Analysis and Stabilization of a Spatial
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Abstract—In order to attain stabilized power-combining opera-
tions of a strongly coupled active antenna array, mode analysis
for the multi-moding problem of the array is presented, and an
effective method for exciting only the in-phase power-combining
mode is proposed. In a one-dimensional array of active antennas
coupled mutually through microstrip lines, the frequencies and
the voltage distributions of the normal modes are obtained.
Stable modes of the array are identified using the averaged
potential theory. Time evolutions of the mode amplitudes are
also calculated. In order for only the desired power-combining
mode to oscillate, appropriate resistors are introduced at the
midpoints of the coupling lines between the active antennas. An
experiment for the arrays with up to eight active antennas has
been carried out using Gunn diodes. It has been confirmed that
the introduction of the resistors is effective for stable excitation
of the in-phase power-combining mode,

I. INTRODUCTION

N ORDER to obtain solid-state high power sources at the

millimeter region, power combining of a large number of
active devices is inevitable since available power of a single
solid-state device decreases remarkably with an increasing
frequency [1]. Recently, the quasi-optical approach to power
combining has been proposed to be the most promising
technique at this frequency region. So far, two types of
approach have been reported. One constitutes an oscillator
with a Fabry—Perot resonator which contains a grid [2], [3] or
a grating [4) mounted with many active devices, while another
forms an array of active antennas accompanied with coupled
oscillators [5]—[9].

In the active antenna array, many individual oscillators
are synchronized through mutual coupling [5]—[7], or by an
external signal injection [8], [9]. The mutual coupling type
has an advantage over the external signal injection type in
the simplicity of circuit configuration. In the active antenna
array with a very large number of mutually coupled oscillators,
however, there are usually several modes which can be excited,
and the oscillation in the power-combining mode is not
necessarily ensured [10]; this is so-called the multi-moding
problem. Therefore, it is important for stable power combining
to overcome the multi-moding problem by letting only the
desired power-combining mode to oscillate.
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The multi-moding problem has been discussed not only in
the oscillators with multiple-device cavities [11], [12] but also
in the active antenna arrays [5], [6], [13]. However, for arrays
with a large number of active antenna elements, it seems that
neither an explicit analytical expression of the condition for
stable oscillations nor an effective technique to stabilize the
desired mode of oscillation has been given yet.

In this paper, we consider the multi-moding problem in
a one-dimensional array of active microstrip antennas with
strongly coupled oscillators. We take a mode analysis approach
which is capable of treating arrays with a number of active
antennas on the assumption of identical characteristics of the
array elements, and propose a method for overcoming this
problem. In Section II, we obtain the frequencies and the
voltage distributions of the normal modes of this array. In
Section 11, criteria for stability of the modes are clarified using
the averaged potential theory [14] which gives a powerful
method for analyzing multi-mode oscillators. The stable modes
of the system are obtained by the use of the criteria. Time
evolutions of the mode amplitudes from the initial states
caused by noise to the settled states are also calculated.
Section IV is devoted to show that introduction of appropriate
resistors into the coupling lines between the oscillators can
suppress all the undesired modes and ensure the oscillation
in the power-combining mode. In Section V, we carry out an
experiment using Gunn diodes and compare the experimental
result with the theoretical one.

II. NORMAL MODES IN A ONE-DIMENSIONAL
ARRAY OF COUPLED OSCILLATORS

A. Structure and Equivalent Circuit

The configuration of a one-dimensional array of IV coupled
oscillators is shown in Fig. 1. Each oscillator, consisting
of a patch antenna and a two-terminal active device, loads
periodically a microstrip transmission line at an interval of d.
Fig. 2 shows the equivalent circuit of the array. Each two-
terminal active device is denoted by a negative conductance,
while the patch antenna portion looking from the device is
represented by the parallel combination of the capacitance C,
the inductance L and the load conductance G 1. The current in
the negative conductance of the device is Ji (k =1,2,---,N)
Any reactive element in the active device may be absorbed
into the passive L and C for the purpose of the analysis.

0018-9480/93$03.00 © 1993 IEEE
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Fig. 1. One-dimensional array of N coupled oscillators.
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Fig. 2. Equivalent circuit representation for the array.

The microstrip coupling line has a characteristic admittance
Yo. The electrical length between adjacent devices is ¢ =
B(w)d, where ((w) is the phase constant at an angular
frequency w. Since no dispersion is assumed, for simplicity,
B is proportional to w in the following analysis.

B. Normal Modes

If each resonant path antenna structure has a high Q-factor,
the frequencies and the voltage distributions of normal modes
of the array can be approximately determined by the reactive
system which is obtained by removing all of the negative
and the load conductances from the circuit in Fig. 2. Let us
represent the voltage at the node of the kth LC-resonant circuit
as v, = Re(Vie’*!) in the reactive system. Here, vy is the
time domain instantaneous voltage, and V), is a phaser but
is real, because the system is now reactive. For the reactive
system, the circuit equations are

Jb+by)Vi 4+ 50 Ve =0
b Vi1 + 5(b 4+ 204) Vi + jby Vi1 =0
k=2,3,-,N—1

JoVN_1 +3(b+b4)Vn =0 €))

where
b= (WO — wI)/Yo = Qul®@~1/9)  (2)
bg = — cot ¢ = — cot(ppQ?) (2b)
by = cosec¢ = cosec(¢o2) (20)

with

wo = 1/VLC (2d)
Q= w/wo (26)
$o = B(wo)d (2f)
Qex = woC/Yo . (22)

¢q is the electrical length of each coupling line at the resonant
frequency wy of each patch antenna, and then ¢ is the
electrical length of this line at the frequency w. Equation (1)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 41, NO. 10, OCTOBER 1993

is written in the vector equation as

. .o
Vi Vi
Vs Va
b | +B| | =0 @)
i VN_ ] VN |
where
r -
o 1 0
1 2y 1
1 27y
B = ' (4a)
0 1 2y 1
I ! K
with
¥ = bg/bs = —cos(¢o?) . (4b)

In the left hand side of (3), the first and second term correspond
respectively to the currents flowing through the LC resonant
circuits and to the currents toward the coupling lines at each
node.

Let us denote the ith eigenvalue and the corresponding
eigenvector of the matrix B as A, and p; = [p1;, pai, - - - ’pNi]ﬂ
respectively. The ith eigenvalue of the matrix jb, B, jb A;,
gives the common admittance looking toward the coupling
lines at each LC-resonant circuit when the voltage at the kth
LC-resonant circuit takes the distribution of the sth mode,
Vk(” = Apy, (k=1,2,---,N), with an arbitrary constant A.
Equation (3) shows that since the admittance of each L.C-
resonant circuit is jb, the frequency 2; of the ith normal mode
of the reactive system can be given by

b+bh, =0. &)
The ith eigenvalue )\, of the matrix B is obtained as

Ai = 2(cos&, + 7). (62)

Here, v takes a discrete value v, as

cos( N2+1 gl) .
COS( N = L fl)

sn( 241 g,)
sin( A > L¢ L) )
(See Appendix I). Two-types of solutions in (6b) are named as
‘cos-modes’ and ‘sin-modes’ due to the voltage distributions.

cos -modes

—Y, = COS(¢QQi) = (6b)

sin -modes

The corresponding eigenvector p; = [pus,pai,- -+, p’ is
given by
/ 2sing, N+l
N51n§f—|—r;in(N§Z) COS{(k ) )61} ’
_ for cos-modes
Prr =

\/Rﬁm%fiﬁaﬁgiSﬁ@(k"ﬂfl)&},

for sin-modes
k=12,--- N @)
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Fig. 3. Graphical representation of (5b) and (8) for the case of N = 4 and
¢ = 27.

where Eﬁzl p%; = 1 is imposed for normalization.
Substituting (2a), (2c), (4b) and (6a) into (5) yields

——;_ Qex (QZ - %) Sin(¢09i) + COS((f)OQi) =cosé;. (8)

Solving the simultaneous equation (8) and (6b) numerically
gives the values of §2; and &;.

In the following, we consider the case of ¢9 = 27 and
0.5 < Q@ < 1.5. Fig. 3 gives graphical representation of (8)
and (6b) for N = 4. The intersections of two curves, such as
P, and Ppg, correspond to 2,’s and &,’s. There exist (2V — 1)
modes in this frequency range (0.5 < 2 < 1.5).

When @¢x = 0, as the susceptances of the LC resonant
circuits looking from the coupling lines vanish, the normal
modes are reduced to the standing wave modes on an open-
ended transmission line of a length of (N — 1) wavelengths at
w = wy. The solution for this case given from (6b) and (8) by
& =(0G—-r/(N-1)and Q; = 1+ (¢ —1)/{2(N - 1)},
i =1,2,---, N corresponds to the standing wave mode which
has {N — 1=+ (¢ — 1)/2} wavelengths on the line. In Fig. 3,
for instance, the length of the transmission line is three times
the wavelength at w = wg, and the points Py (i = 1), Pg
(¢ = 2, the upper sign) and Pc (¢ = 2, the lower sign)
correspond to the modes with three, three and a half, and two
and a half wavelengths on the line, respectively.

On the other hand, as Q. increases, the frequency spacings
between adjacent modes for a given ¢ become narrower
because of frequency dependence of susceptances of the LC
resonant circuits (See Pp and Po are changed to Pp and
Pg, respectively). When Qo > 10, the solutions can be well
approximated by

&z—]’\;{z’—ué‘;sm@—#} (9a)
- 1 . (i-Dm
Ql_li\/msm 5
1 . —-Dm
T oL M TN
i=1,2,---,N. (9b)

Because there are two (£;, €);) values with very close values
for 7 # 1, we number each mode in increasing values of &; as
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Fig. 4. Modes for the case of N = 4 (¢o = 27, Qex = 15).

1,2,--- with subscript H for 2; > 1 and L for ©; < 1. For
instance, in Fig. 3, the points Pp and Pg correspond to the
mode 2y and 2, respectively, for the case of Qex = 15. In
this paper, we write the subscript H or L only when distinction
is needed. In contrast, 7 + 1 gives the single value of {1 = 0
and €3 = 1 which corresponds to the point P4 in Fig. 3; for
this special case, (7) is reduced to

1
Pkl—\/—ﬁ

Fig. 4 shows not only the frequency and ¢; value but also
the standing wave pattern of each mode on the coupling lines
for the case of N = 4 and Qex = 15. Mode i = 1 is the
desired mode for spatial power combining because all of the
antenna elements can oscillate not only in phase but also in
equal amplitudes. All other modes are undesirable modes.

kE=1,2,---,N. (10)

ITII. ANALYSIS OF STABLE MODES

In this section, we intend to obtain criteria for stability of
the mode and to find stable modes in the system.

A. Averaged Potential

We assume the current-voltage characteristic of the active
device in Fig. 2 as B
Jk:‘lek+G3'vlga k:]-yz,"',N (11)

where vZ-term is omitted since it has no effect on the analytical
result. According to the averaged potential theory [14], such a
system as the coupled oscillators in Fig. 2 evolves with time

toward the direction in which the averaged potential of the

- system decreases, and the stable steady-states correspond to

the minimum points of this potential (See Appendix II). The
averaged potential U for the circuit system in Fig. 2 is given
by the time average of the sum of the following quantities for
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all the conductances in the system:

1 t+T N
U= T / Z (Qk,a + Qk,L) dt (12a)
t k=1
where
vg
1 2, 1 4
Qo = | Jpdug = ) G + T Gsvg,
for the kth device (12b)

Vi

1
Qr.L = /GL'de’Uk = 5 GLUZ, for the kth load
(12¢)

Here, o and L in the subscripts denote the active device and
the Joad, respectively. It is assumed that 1" is sufficiently large
so that the integral can be taken over many cycles.

Representing the averaged potential using the normal modes,
we can find the behaviors of the normal modes. For this
purpose, we have normal mode expansion of vy, as

ve =Y pridicos(Quwot + 1)  k=1,2,---,N (13)
where A, and ¢, are the amplitude and the phase of the
ith mode, respectively. The summation may be taken over
the modes included in the working frequency range of active
devices. Using (12b) and (12¢) and (13) in (12a) yields

_1 2, 1 2 42
U= -z;aiAz +5 ;;eﬁAiAJ (14)
where
a, =G — Gy, (153)
N
Gs Y i fori=3j
9,;]' = k=1 (15b)

N
2G3 kzl Py fori#j

o, and @;; are called the small signal gain parameter and the
self-saturation parameter of the ith mode, respectively, and
6.; (4 # 7) is called the mutual-saturation parameter between
the ¢th and jth mode.

Table I gives the matrix [6,;] for the same parameters as
those used in Fig. 4 (N = 4, ¢o = 27 and Qex = 15). When
Qex is high, (15b) together with (7) and (9a) gives a rough
approximation of 6,; as

bi o J 1/N, fori =1, 1+ N/2 (only for even N)
Gz~ | 3/(2N), otherwise
(16a)
and for ¢ # j
1/N, fori+j=N+2(,5+#1), and
0. i=mg.j =nr (m#n)or v.o.
E”_g 3/N, fori=myg, j=mp (m#i+ N/2)
8 or v.v.
2/N, otherwise.

(16b)
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TABLE I
[8.,] FOR THE CASEOF N = 4 (¢ = 27, Qex = 15).

1 2 21 3 31 4y 47,

1 [250 .500 500 .500 .500 .500 .500]
2 | 500 371 .743 534 531 .277 274
2r | 500 .743 372 .534 .531 277 .274
1
55[9”]:311 500 534 534 252 504 469 .469
3r |.500 531 531 504 252 472 471
g | 500 277 277 469 472 353 .708
4r L.soo 274 274 469 471 708 .355]
"We can find from the table that the mode i = 1 is stable since

611 = 0.25G3 and 61, = 0.50G3 (n = 2.2.---,4,) satisfy (22).

B. Steady States and Stability

Now, since we have the averaged potential of the system, we
can discuss the steady states of single-mode and simultaneous
multi-mode oscillations and their stabilities.

In the case when a single mode, say the ith mode, is excited,
the steady-state amplitude of A,, A;q, is given by the condition
OU/0A,|a,=4,,4,(4.,=0 = 0 (See Fig. 5(a)). This results in

A% = 0, /0 . (17)

For the desired power combining mode ¢ = 1, as the voltage
amplitude at the kth node is expressed as prj A0, the output
power supplied to the %th load conductance is given by

1
Poutk = 5 Grpridi)’. (18)
Using (10), (15) and (17) in (18) gives
Gr(G1— Gp)
ou = — 19
Pout k 5G, (19)

which takes the maximum value P2e% = G2/(8G}3) if the
load conductance is chosen as

Gr=Gh/2. (20)

Stability condition can be given by the minimum of the
averaged potential. Since U is expressed as the quadratic
equation of squares of the mode amplitudes as shown in (14),
then (17) gives the minimum point of U with respect to A?,
Therefore, the condition for stable single-mode excitation of
the sth mode is expressed as

gA% = %(—Ozi -+ OmAfo) >0
™ A=A, A, (£)=0

for all n (# 1) . (21)
(See Fig. 5(a)). Because the amplitude of every mode varies
toward the direction of decreasing U, (21) means that the
mode amplitudes other than the ith mode must decrease near
this state even if some noise generates these modes with
small amplitudes. In other words, (21) gives the condition that

existence of the sth mode with its steady-state amplitude can
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(b)

Fig. 5. Topological expression of the averaged potential U. Though U is
defined on the multi-dimensional space with AZ -axes (m = 1,2H, 2L,
3H,---), U is expressed topologically on the space with only two axes
for convenience. Nonnegative region of A2, should be considered. Dotted
curves express U in the negative region of A2 . (a) In the case when
single-mode excitation of the :th mode is stable. (b) In the case when
double-mode excitation of the ¢th and jth mode is stable. U varies along
the axes except AZ- and A2-axis in a similar manner as along A2 -axis in (a).

suppress all other modes. Using (15a) and (17), one can write
(21) as
0;, < 8n; foralln (F#1). (22)
As for the simultaneous double-mode oscillation of the ith
and the jth mode, the steady-state amplitude A;, and Aj,
can be obtained from the condition dU/A,|4,=4,,,4,=4,.,
Am(#L,]):O = 0 and aU/aAJ,A1=Azs;AJ=AJs:Am(#z,3)=0 =0
as

4% = (a5 — a;0:5)/Oq; (23a)
Ags - (ajeli - aiai])/@i] (23b)
(See Fig. 5(b)) where
| 0n 0
0;; = 6,; 0, (23c)

The corresponding stability condition is given by the following
two inequalities. The first inequality is the condition for U to
take the minimum near this steady state with respect to A2
and A?; this results in

©,; > 0. (24a)
Speaking physically, (24a) is the condition for both the ith and
the jth mode to exist at the same time. The second inequality
is the condition which has a similar meaning as (21), that is,
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oU

2
6A” Ai:Azstj:AJS’Am(¢’-:J)=O

1
=3 (—an + OniAZ, + 8,,A%,) >0
for all » (# ¢,5) (24b)

(See Fig. 5(b)). The meaning of (24b) is similar to (21).

For instance, in the case corresponding to Table I (N =
4, ¢o = 27 and Q. = 15), above stability conditions identify
the stable modes as follows:

stable single modes: ¢ = 1, 3g and 3,

stable double modes: (2y,4#), (2m,4L), (2£,4L) and
(21,4H).

When Qex is high, the stability of the mode is identified by
the approximation in (16) as

stable single modes: i = 1, (1+ N/2), and (1+ N/2);

stable double modes: {ms,(N +2—m)g}, {mu, (N +

2— m)L}, {mL, (N +2 - m)L} and {mp, (N +2 - m)H},
m=2,3,.---,[(N+1)/2], N > 3.
Under this approximation, no more than two modes oscillate
simultaneously. A mode with almost uniform voltage
distribution at the active devices tends to be a stable single
mode, while a pair of modes which have complementarily
nonuniform distributions to each other tend to form a stable
double mode.

C. Competitive Growth of Modes

Time evolution of the mode amplitudes and phases can be
given by the averaged potential [14] as

dA; _ _l oUu
dt ~ I 8A;
— 1 2 2
= QTZ ay — giiAz — Z gi]Aj A@ (258.)
J#i
di, .
= =1 e
o =0 =12 (25b)
with
N-1
1 2xn 2
I,=C|1+ — HEA dz
3o 30 2 )
~~ kth coupling line
(25¢)

where Ao is the wavelength on the coupling lines at w = wy
and p;(z) is the standing wave voltage distribution on the
lines in the 4th mode as shown in Fig. 4 (See Appendix II).
The voltage distribution p;(x) on the kth coupling line can be
obtained from the voltages at both ends of the kth line, p;, and
Pk+1,i> and the wavelength at the frequency of the ith mode.
I; can be thought to be the inertia of the ith mode oscillation.

Just after the dC power supply for the active devices is
turned on, each mode starts to grow competitively from the
small initial amplitude which is given by the initial noise
voltage distribution. The initial condition decides which one
of stable single or double modes remains in the final stage
through (25). When every mode amplitude is small, (25a)
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gives the growth of A; as

Ai(t) = A (0)exp{al/(21)} = A( 0)exp( 20T, wgt)
(26a)

where
Qo = wC/(Gy — Gr)

is the active @ of each resonant circuit. This shows that if the
ith mode has smaller value of I;, the mode grows faster.

An example of I, values for the case of N = 4 is also shown
in Fig. 4. The power combining mode (i = 1) has the smallest
I, value due to small p;(z), because the maxima of standing
wave are located at the antenna elements. On the other hand,
other undesired modes have relatively large I, values. In the
example given in Fig. 4, we have min1) (L/I1) = 1.7;
this minimum value depends only a little on N and tends to
increase with Q..

Fig. 6 shows the result of simulation of growth of the
modes for the case N = 5,¢9 = 27 and Qo = 15 where
T = wot and A, = A,/ — Gr) + Gs. In (a), though
the initial amplitude of mode i = 1 is one tenth of those
of other modes (21(0) = 1073, 4;(0) = 1072 ( # 1)), the
mode 7 = 1 grows faster and overcomes the other modes.
In (b), however, too much difference between these initial
amplitudes makes the mode ¢ = 1 ultimately decay. The range
of the initial amplitudes for the mode ¢ = 1 to survive is shown
in Fig. 7, which indicates that the probability of survival of the
mode ¢ = 1 is considerably higher if the initial amplitudes of
all modes are relatively low.

(26b)

IV. SUPPRESSION OF UNDESIRED MODES

In order to ensure the oscillation at the power combining
mode for the system, it is necessary to suppress all the
undesired modes.

A. Introduction of Absorbers.

Let us introduce a resistor R at the midpoint of each
coupling line of Fig. 1 as shown in Fig. 8(a). Since the electric
current through each I at the ¢th mode is given approximately
from the standing wave voltage as shown in Fig, 4, we can find
that R gives power loss to the undesired modes without effect
on the desired power-combining mode. In the following, we
evaluate the effect of R. In the equivalent circuit representation
as shown in Fig. 8(b), we have

Iy j‘ [Yn le] { Vi ]
= 27
[Ik+1 Yo1 Yoo | | Vieqt @7)
where
1 RY,
Yii =Y = Z_F—O Yo
2
(RYO cos %)
+j ~cotd>+cosec¢———4—F——— Yo
1 RY, n? &
Yo=Y = ————OYU + jcosec qS 2Y, (28a)

4 F
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10 12(x102)

Fig. 6. Simulated result of growth of the modes (N = 5, ¢o = 27, Qox =
15). In1t1a1 condition: (a) A(0) = 1073, A,(0) = 102 (i#1)
(b) A1(0) = 1073, A,(0) = 2 x 102 (¢ % 1). Amplitudes of typical
modes are plotted.
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Fig. 7. Initial mode amplitudes for survival of the desired power-combining

mode (1st mode).

with

o2 £

5 (28b)

2
a2 ® RYj,
F =sin -2+(—2 )

The power loss in the kth coupling line is given by

Ploss,k = (1/2) Re(Ika* + Ik"i'lV’:—}—l)
= (1/2)(Re(Yar) (I + Ve )

+ 2 Re(Y12) Re(VEViga)} (29)

where the asterisks denote conjugate quantities.
In case of RYy << 1, neglecting the change of voltage
distribution due to introduction of R, the power loss in the
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Fig. 8. Introduction of a resistive absorber. (a) A resistor R at the midpoint

of each coupling line. (b) Equivalent representation.
1.07
0.8

0.61

IAail/Yo(ivn)

0.4

0.21

0.0
0.00

=

T T
0.05 0.10 0.15

RYy

Fig. 9. Dependence of |Aa,|/Yy (i#1) on RY; for the case of
N =5, ¢o = 27, Qex = 15. Results for typical modes are plotted.

kth coupling line is expressed using (13), (28), and (29) as

1
Pioss,p = 5 ZAf Re(Y11)(pki — Prt1,)’
k=1,2,---,N—1. (30)

The increment of the averaged potential due to introduction

of all the resistances, AU, is given by (1/2) ZkN;ll Pioss
which together with (7), (28) and (30) yields

AU = =" Aa; A? (31a)
where
Aai =

05 t=1
RY, , (N—1)sin &, Fsin{(N—-1)¢, . 31b
{ —YO _FD_ Sln2 %( I%sin&j:sin%&fl) : }’ ’ 76 1 ( )

and, hence it is confirmed that the mode ¢ = 1 is not
affected. In (31b), the upper and the lower sign for i # 1
correspond to the cos-mode and to the sin-mode, respectively.
|Ac;| is the amount of decrease of the gain parameter of
the ith mode due to R’s. Fig. 9 shows the dependence of
|Ac;|/Yo (i # 1) on RYy for the case of N = 5, ¢o = 27
and Qe = 15. |Aq;|(z # 1) is the smallest for the mode 2.
The dependence of |Ae;| for the mode 2y on N is given
in Fig. 10; min;(»1) |Ac;| decreases with increasing N and
decreasing Qex.
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Fig. 10. Dependence of min, 1y {|{Ae,|/Yo} on N.

B. Suppression of Undesired Modes

Undesired modes can be made unstable when their stability
conditions (21) and (24b) with n = 1 are no longer satisfied by
introduction of R’s. Because o, should be replace by a,+Aax,,
such conditions for suppression of undesired modes are written
as

01 .
a1 — ?oi (o +Ao)>0  foralli(#1)  (32a)

and for all pairs (Z, ) which satisfies (24a),
ay — 01 A = 0,147, >0 (32b)

where Aj, and A, are the mode amplitudes obtained by (23)
with above replacement for «, and «;. These inequalities
mean that the desired 1st mode can grow even if there
exists an undesired single-mode or an undesired double-mode
oscillation with the steady-state mode amplitude.

In the case of a high QJex, using (16) in (32a) gives

+(G1—Gyp) fori#1+N/2
lAazl>{;‘( LA ==
5(G1—Gr) fori=1+N/2.
For (32b), the sufficient condition is written as
. 3
min 21y (|Aai]) > 2 (G1—Gp) 34

Summing (33) and (34), we obtain the sufficient condition for
suppressing all the undesired modes as

‘ { %(Gl —Gyp) foreven N

in, Aal) > 35
min;(z1) (|Aa|) 2 (G1—GL) forodd N. %)

When the load conductance Gy, is optimized for maximum
output power, the term G — G, in above inequalities becomes
G1/2.

V. EXPERIMENT

Experiment was carried out for the arrays with two, four
and eight oscillator units using packaged Gunn diodes manu-
factured by Alpha Industries.

Large-signal admittance of each Gunn diode was measured
at the design frequency 12.45 GHz. A single microstrip Gunn
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Fig. 11. Configuration of the oscillator array.

diode oscillator was constructed, and the maximum output
power at the design frequency was obtained by adjusting the
load admittance. The averaged maximum output power and the
corresponding load admittance Yz, were 4.0 mW (6.0 dBm)
and 12.7-3514.1 mS, respectively. The large-signal Gunn diode
admittance is then given as —Yp, [6].

The oscillator arrays were fabricated as shown in Fig. 11
using Duroid 5870 with a thickness of 31 mil and a relative
dielectric constant of 2.33. Each patch antenna oscillator unit
was designed by use of CAD so that it can oscillate at
12.45 GHz and can generate the maximum output power.
Note that these units are not yet connected together as the
gaps are provided between adjacent units. A two-stage quarter
wavelength transformer between the patch antenna and the
diode was used for admittance matching. An open stub was
attached to each Gunn diode for fine tuning. All the Gunn
diodes had common DC bias voltage. However, there were
still small variations in the characteristics of the osciliator
units. In the case of the array with eight units, for instance, the
free-running oscillation frequency and the effective radiation
power (ERP) of each unit were on the average 12.452 GHz
and 13.2 dBm with the maximum deviation of 15 MHz and
1.4 dBm, respectively.

First, adjacent units were connected with a conductor strip
with its width almost identical to that of the coupling mi-
crostrip lines. In this case, though a single frequency spectrum
of the in-phase mode was observed for the two unit array,
oscillation with a single frequency spectrum could not be
obtained for the four-unit and the eight-unit arrays. Fig. 12(a)
shows the spectrum of the output received in the broadside di-
rection of the eight unit array. Similar spectrum was observed
for the four-unit array. Measurement of the directivity pattern
of each frequency showed that different frequencies with
different patterns were contained. It is conjectured from this
spectrum that either of the following two types of oscillations
was excited in the four-unit and the eight-unit arrays. One type
is the simullaneous multi-mode oscillation with interactions
between the constituent modes. The other type is the unlocked
oscillation in which the active antennas in the major part of the
array are locked together, while the remainders are unlocked.
This is strictly a conjecture and requires a further study.

Next, a chip resistor was introduced between adjacent os-
cillator units in order that only the in-phase power-combining
mode can oscillate. Resistors of 2 ) were not sufficient to
stabilize the in-phase mode for the four-unit and the eight-
unit arrays. When chip resistors of 4.7 £ were used, stable
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oscillation of the in-phase mode was easily obtained for all the
cases of two-unit, four-unit and eight-unit arrays. For the cight
unit array, the spectrum is shown in Fig. 12(b), while the H-
plane and E-plane radiation pattern are shown in Fig. 13 with
comparison of theoretical values. The cross polarization ratio
was larger than 25 dB. The ERP’s of two-unit, four-unit and
eight-unit arrays were 19.1 dBm, 25.1 dBm, and 30.4 dBm,
respectively. The increment of about 6 dB shows that stable
power combining with very high efficiencies can be attained.

The suitable value of the resistance to suppress the undesired
modes was determined by equation (35) and Fig. 9. From (35),
the smallest value of |Aw;| must be larger than (G1 — G,)/2.
Since the oscillator was designed by maximizing the output
power at 12.45 GHz, the load admittance Y was equal to
the negative value of the device admittance Yp. As described
above, Yy, was equal to 12.7-514.1 mS. Therefore, Gy was
equal to 12.7 mS. From (20), G was equal to G;/2 for
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the nonlinear device model in (11). With these information,
(G1 —Gr)/2 = GL/2 = 6.35 mS was calculated. Normal-
ized by the characteristic admittance of the coupling line Yy,
the smallest value of |Ac;|/Y, must be larger than 0.3175
for the suppression of all the undesired modes. From Fig. 9,
it can be teasonably stated that RY; = 0.07 was sufficient
to suppress all the undesired modes. Therefore, the sufficient
value of R was 3.5 €. The above calculation is based on the
approximation of Q. = 15. Considering the possible errors
of the data used in calculation, we selected a larger value
of 4.7 Q. The experimental result shows that the resistors
of 4.7 Q were able to stabilize the in-phase mode oscillation
while the resistors of 2 {2 were not.

The oscillator arrays in the experiment had some com-
plicated factors which cannot be considered in the theory:
unevenness of the free-running oscillation frequency and the
output power of each unit, the narrow bandwidth of the patch
antennas and the complex characteristics of Gunn diodes.
Therefore, it is not easy to explain the experimental results
in detail using the mode theory. However, it can be concluded
that the theory is effective in letting only the in-phase mode
oscillate by the proposed insertion of resistors.

V1. CONCLUSION

For a one-dimensional array of active microstrip antennas
with strongly coupled oscillators, a mode analysis of the array
has been presented, and an effective method for obtaining a
stable in-phase power-combining operation has been proposed.

In the mode analysis, the frequencies and the voltage
distributions of the normal modes of the array have been
obtained. Stable modes of the array have been identified
using the averaged potential on the assumption that the active
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devices have cubic voltage-current characteristics. Simulation
of time evolutions of the mode amplitudes have indicated that
the probability of survival of the in-phase power-combining
mode is high if the initial amplitudes of all modes are relatively
low. It has been shown analytically that only the oscillation
of the in-phase power-combining mode can be excited when
appropriate resistors are introduced at the midpoints of the
coupling lines between the oscillators.

An experiment for two-unit, four unit, and eight-unit array
using Gunn diodes has confirmed that the introduction of
appropriate resistors is effective in exciting only the in-phase
power-combining mode. In contrast, when each oscillator unit
was connected directly using conductors, a single spectrum
could not be obtained in the arrays with more than four units;
the oscillation spectra are not easily explained by the mode
theory.

The mode theory presented here has treated an idealized
active antenna array. The theory has assumed that all the units
of the array are identical and the active devices have cubic
voltage-current characteristics. It is planned to improve the
theory so as to be able to treat actual arrays with variations
of the elements.

It is important to investigate the behavior of the active
antenna array when some active devices fall into trouble. It
is also significant to attain stable in-phase power-combining
operation in a two-dimensional array with a very large number
of active microstrip antennas. These are left for future study.

APPENDIX |

For the ith ecigenvalue A, and eigenvector P, =
[D10, D20, - - ,pm]t of the matrix B, the equation [B — A, E]
P, = 0, where E is a unit matrix, together with (4a) gives

Pr—1, + (27 — Xi)pr + Pr11,: = 0, k=23,---,N-1

(A1)

with the boundary condition
(v = AP +p2 =0 (A2a)
pn—1:+ (v —A)pNne = 0. (A2b)

Assuming the variation of p, as e because of structural
periodicity, (Al) yields

e+ 2y - NP +1=0. (A3)

We can represent two roots for e® as e’ and =7, since
(A3) shows the product of the two 1oots equals to unity.
Equation (6a) can be obtained using (A3).

The general expression for p; can be given as

Pro = Cre? F=D8 4 Cpema k=D, (A4)
Substituting (A4) and (6a) into (A2) gives
g+ eI v + et C
(r}/ + e—]gz)e—j(N_l)gz CZ

(y + e ) IV =D
- [3] . (AS)

In order for C; and Cp to have nontrivial solutions, the
determinant of the matrix in the left hand side of (A5) should
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vanish, which yields (6b). Substituting the ratio C;/C; into
(A4) gives (7) as a normalized expression.

APPENDIX 11

M. Kuramitsu and F. Takase originally developed the aver-
aged potential theory for lumped-element circuit systems [14].
In order to apply this theory to the circuit with transmission
lines in Fig. 2, we represent TEM transmission lines equiva-
lently as conventional ladder networks with series inductances
lpAxz’s and shunt capacitances coAxz’s, where Az is the
length of each infinitesimal section of the lines, and cy and
1 are the capacitance and the inductance for the line of unit
length, respectively.

For the equivalent circuit, the time variation of mode
amplitudes can be given by (25a) with

I = Z Cmpfm'
m

where the summation is taken over all the capacitances, and
Pmi is the voltage distribution of the ith mode at the mth
capacitance. Equation (A6) is written as

(A6)

{pi(2)}? dw

coupling lines

N
I; = C’Zp%i +co
k=1

(A7)

which gives (25¢) using the relations Yy = +/co/lo, 1/
\/Colo = wo)\o/(Zﬂ') and (Zg).
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